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EXECUTIVE SUMMARY 

Mauritius suffers from chronic water shortage problems that can severely impact its economy 

and the well-being of its population. For instance, in 1998-1999, the island faced a drought that 

resulted in a 40% decrease in sugar production, and a drop of about MUR 2 billion in GDP. On 

the social level, the water deficit the country faces is a major problem for residents. Water 

availability in reservoirs and major aquifers are influenced by precipitation regimes, which are 

affected by large-scale circulation patterns such as the El Niño Southern Oscillation (ENSO) and 

the Indian Ocean Dipole (IOD). In this study we (i) investigate the relationship between both 

ENSO and IOD with precipitation, (ii) develop an Artificial Neural Network (ANN) for 

precipitation prediction based on ENSO and IOD, (iii) develop statistical and time-series models 

for precipitation forecasting, and (iv) conduct a drought analysis based on multiple precipitation 

deficit variables (duration, severity and inter-arrival time). Monthly precipitation data for the 

period between 1961 to 2012 for the Vacoas station are used in this study.  

We found some correlation between average winter ENSO indices and precipitation, while the 

correlation for summer was negligible. Statistically significant correlation was found between 

average winter precipitation and IOD index. We also found that the correlations fluctuate over 

time.  

With ANNs, we obtained an average winter precipitation prediction accuracy of 86%. Prediction 

of summer precipitation was less accurate than winter precipitation. Results obtained from ANN 

were more accurate than those from other statistical techniques, such as linear regression and 

autoregressive integrated moving average (ARIMA). This may be attributed to the ability of 

ANNs in capturing the non-linearity in the system. Both ANNs and regression based models 

predict winter precipitation with remarkably higher precision than summer precipitation. 

Standardized Precipitation Index (SPI) is proposed as a simple and effective index that can be 

used for drought definition. It is a spatially invariant quantity that can be computed to give 

precipitation deficit at multiple timescales. Based on SPI for six months for Vacoas, we found 

that drought durations vary between 1 and 9 months with a mean of 2.6 months. The mean inter-

arrival time is 15 months. We also identified the severity of all drought events between 1961 and 

2012. We computed the conditional drought duration and severity. 

The findings from this study can help in more efficient planning and management of scarce 

water resources on the island. This study should be extended in several ways: (i) cover longer 

time periods to investigate possible impact of climate change, and (ii) cover more stations across 

the island, (iii) incorporate other meteorological parameters, and (iv) develop models to predict 

other key variable such as water levels in reservoirs.   
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1 INTRODUCTION 

1.1 BACKGROUND 

The water shortage problem that Mauritius regularly faces is alarming. Based on the United 

Nations’ definition [United Nations, 2011], Mauritius is a water stressed country. The Water 

Resources Unit in Mauritius predicts that by 2020, the country will slip into the water scarce 

category [Deepchand and Khedun, 2005]. The droughts in 1998-1999 and 2010-2011 were 

particularly acute, with alarming low water levels in reservoirs and boreholes compared to other 

years.  

The demand for water in Mauritius has been growing rapidly, with an increasing and more 

affluent population as well as new towns, hotels, industrial zones, residential and mixed-use 

properties. Furthermore, the island does not have enough carry-over capacity i.e. most of the 

water received during a hydrologic year is used within the year itself. Thus, a shortage of rainfall 

can have immediate and disastrous effects on the well-being of the population and various 

economic sectors of the island.  

1.2 RATIONALE  AND OBJECTIVES 

There have been numerous solutions proposed, in terms of better water management as well as 

novel infrastructure and technology. Robust and effective solutions can only be developed with a 

rigorous scientific understanding of the various facets of this complex problem – from the impact 

of El Niño/La Niña on precipitation in the Indian Ocean, to the legal system of water ownership, 

through the applicability of technologies like desalination and cloud seeding in Mauritius.  

In this project, we aim at filling an evident gap in the understanding of the water problem in 

Mauritius: exploit climatic and meteorological data, and the latest research in the field to explain 

and predict rainfall and the level of water in our reservoirs. In particular, the impact of large 

scale circulation patterns on precipitation is studied. We adopt an interdisciplinary approach that 

taps on the extensive work done in hydroinformatics, an emerging research and development 

area on state-of-the-art information technologies to address problems in hydrology.  

We use past climatic data to develop explanatory and predictive models for precipitation. 

Besides traditional statistical approaches such as time-series analysis, and regression, we are also 

developing machine learning and statistical pattern recognition tools such as artificial neural 

networks.  
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Our objective is to develop a model that uncovers the most likely hypothesis of what determines 

water levels. We are focusing on precipitation at Vacoas because of its proximity to Mare aux 

Vacoas, one of the most important reservoirs in Mauritius, where the drop in the water level is 

particularly acute and alarming. We argue that such models are crucially important because they 

can shed light on the underlying phenomena. A predictive model can enable medium and long 

term planning, and facilitate proactive measures for forecasted water shortages and droughts. An 

explanatory model can help in the development of robust, sustainable and effective solutions. 

We hypothesize that there exist a statistically significant relationship between large scale 

circulation patterns and local hydrological conditions, especially precipitation, which determines 

water level in the reservoirs. A schematic diagram of the research hypothesis is given in Figure 

1. 

 

Figure 1. Schematic of research hypothesis 

Our objectives in this study are framed around this hypothesis, and consist of two major 

components: (1) establish the relationship between indices of large-scale circulation patterns 

(ENSO and IOD) and precipitation in Mauritius, and (2) use these indices to predict 

precipitation. We also aim to develop a framework for defining drought events based on multiple 

parameters, such as duration, severity, and inter-arrival time. This framework can be useful in 

better understanding drought phenomena and determining their conditional probability of 

occurrence. 

One of our initial objectives was to develop a model to establish the relationship between water 

level in Mare aux Vacoas reservoir to the various factors that affect inflow and outflow of water 
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(precipitation, water consumption, evaporation, etc.). However, historical data on water level and 

consumption for the reservoir were not available. Thus, we re-formulated our objectives to focus 

on precipitation prediction, and also added a new component dealing with multivariate drought 

analysis.  

1.3 OVERVIEW OF METHODOLOGY 

1.3.1 Hydroinformatics 

Hydroinformatics [Kumar et al., 2006] is an interdisciplinary field for the study of the 

application of information and communications technologies in addressing the challenges of 

equitable and efficient use of water for many different purposes. It stems from techniques 

originating from artificial intelligence, such as artificial neural networks, support vector 

machines, genetic programming, Markov chains, etc. Hydroinformatics draws from the 

following disciplines: hydraulics, hydrology, environmental engineering, computer science, 

statistics, and machine learning. It is used at all stages in the water cycle, from the atmosphere to 

the ocean, through water supply systems, urban drainage, etc. It provides support for decision 

making at all levels from governance and policy through management to operations.  

1.3.2 Statistics and Time-Series Analysis 

Statistics and time-series analysis tools and techniques for analyzing data have been extensively 

used for establishing patterns and forecasting in atmospheric sciences and hydrology. Coupled 

with more powerful computational tools, very complex models and routines can be developed 

that are theoretically sound as well as computational tractable. With the emergence of numerous 

statistical software (like MATLAB, SAS, Stata, R, etc.), multivariate techniques in the time and 

frequency have been made more accessible. Extremely large datasets driven by periodic 

phenomena can now be handled using extensions to time series of classical methods like 

multivariate regression, analysis of variance, principle components, factor analysis, and cluster 

analysis [Silverman and Dracup, 2000].  
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2 DATA 

2.1 PRECIPITATION 

Monthly precipitation data for the Vacoas station was obtained from two sources. Data for the 

period 1961 to 1990 was obtained from the National Climate Data Center (NCDC) and is part of 

the Global Historical Climatology Network (GHCN). Data beyond 1990 was not available from 

the NCDC and was purchased from the Mauritius Meteorological Services (MMS). Figure 2 

gives a plot of the monthly precipitation for January 1961 to September 2012, along with the 

long-term mean (170.54 mm). It is apparent from the plot that the precipitation is not around the 

long-term mean but is highly variable. For most months, the precipitation is below the long-term 

mean, and for some months, the precipitation is several magnitudes above the long-term mean.   

 

Figure 2. Monthly precipitation at Vacoas for January 1961 to December 1990. The dotted 

gray line represents the long-term mean (170.54 mm). 

 

Figure 3 is a boxplot for the monthly precipitation for each month. The largest variation in 

precipitation is noted for February followed by January, which are also the two wettest months. 

One notable outlier is for December, where the monthly total was 1,362 mm (December 1961). 

The median for precipitation is generally lower than the long-term mean for each month (Figure 

4), which implies a slight positive skewness in monthly precipitation.  
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Figure 3. Boxplot of monthly data for Vacoas station 

 

The mean monthly precipitation was computed for the different periods:  

� 1961-1990, which is data obtained from the NCDC, 

� 1991-2012, which is data purchased from MMS, and  

� 1961-2012, the total precipitation series.  

Figure 4 shows the mean monthly precipitation for the three periods. Precipitation at Vacoas is 

unimodal, with the period December to April recording the highest precipitation. We note that 

the mean monthly precipitation for the period 1991-2012 is considerably lower than the period 

1961-1990. Table 1 gives the mean monthly precipitation for the three periods considered and 

the percentage decrease in rainfall for 1991-2012 with respect to 1961-1990. The largest 

decrease is noted for December (31%) followed by August (23%), and January (20%). 

The percentage change in mean precipitation is atypical, and should not be hastily attributed to 

climate change without further investigation. There seem to be a shift in the precipitation time 

series. Such shift may be due to multiple factors, for example, a change in the type of recording 

instrument, change in the location of the recording instrument, or a change in the nature of the 

surroundings of the instrument. Booneeady [2010] illustrates such shifts in temperature recorded 

at the Pamplemousses station. Further analysis, coupled with historical information from MMS 

1 2 3 4 5 6 7 8 9 10 11 12

0

200

400

600

800

1000

1200

1400

Month

P
re

c
ip

ita
tio

n
 (

m
m

)



11 

 

may help identify the location in time and cause of the shift. For the purpose of our study, 

however, we assume that the data is homogeneous and stationary.  

 

Figure 4. Mean monthly precipitation for the period 1961-1990, 1991-2012, and 1961-2012 

 

Table 1. Mean monthly precipitation for the period 1961-1990, 1990-2012, and 1961-2012 

and percentage decrease in mean precipitation between 1961-1990 and 1990-2012 

Month Mean (1961-1990) Mean (1991-2012) Mean (1961-2012) % Decrease 

January 356.51 286.395 326.85 19.67 

February 366.30 345.277 357.41 5.74 

March 268.13 291.450 278.00 −8.70 

April 209.10 163.909 189.98 21.61 

May 114.80 132.400 122.25 −15.33 

June 111.72 93.468 104.00 16.34 

July 120.44 123.277 121.64 −2.36 

August 128.29 98.814 115.82 22.97 

September 80.37 81.309 80.77 −1.17 

October 72.23 61.343 67.75 15.07 

November 90.79 62.671 79.21 30.97 

December 232.13 153.214 199.64 34.00 
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2.2 EL NIÑO SOUTHERN OSCILLATION 

Several indices are available for ENSO, namely the Southern Oscillation Index (SOI), Niño 3, 

Niño 4, Niño 3.4, the Multi ENSO Index (MEI), among others. The Niño 3.4 index, proposed by 

Barnston et al. [1997] has been employed in a number of hydro-meteorological studies as it has 

both maximum correlation with the core ENSO phenomenon and strongest influence on remote 

teleconnection events. It is the area-averaged sea surface temperature anomaly (SSTA) over the 

region bounded by 5°N–5°S and 120°W–170°W, straddling the Niño 3 and Niño 4 regions. 

Monthly data for the Niño 3.4 index was obtained from the International Research Institute (IRI) 

on Climate and Society Data Library.  

2.2.1 Niño Indices 

Four Niño regions (1, 2, 3, and 4 as shown in Figure 6) along the equatorial Pacific have been 

chosen to monitor SST. The warming in these regions are not uniform and no single region can 

capture the whole ENSO phenomenon. Barnston et al. [1997] investigated the correlation 

between the index from each region with remote hydro-meteorological variables and proposed 

the Niño 3.4 index. The latter has the highest correlation between the core ENSO phenomenon 

and remote teleconnection events. A plot of the Niño 3.4 index for the period January 1961 to 

July 2009 is given in Figure 6. Positive (negative) SSTAs are shown in red (blue). Sustained 

positive (negative) anomalies are indicative of El Niño (La Niña) conditions.  

A number of different definitions have been used to define El Niño (La Niña) events. Mackay 

[2003] suggested the use of the Niño 3.4 index for the definition of El Niños, and “El Niño can 

be said to occur if 5-month running means of sea surface temperature (SST) anomalies in the 

Niño 3.4 region (5°N–5°S, 120°–170°W) exceed 0.4°C for 6 months or more.” The reverse of 

this definition can be adopted for the definition of La Niña events. The Niño 3.4 index plotted in 

Figure 6 is overlain with a 5-month moving average and the ±0.4 thresholds. 

Other definitions, with slight variations to the one proposed by Mackay [2003], have since been 

proposed and have been adopted in different regions of the world. To our knowledge, no official 

definition for El Niño or La Niña has been developed or adopted for Mauritius.  
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Figure 5. Niño regions in the Pacific Ocean (Source: National Oceanic and Atmospheric 

Administration) 

 

 

Figure 6. Time series of Niño 3.4. The Niño 3.4 series is overlain with a 5-month centered 

moving average series and ±0.4 thresholds. 

 

2.2.2 Southern Oscillation Index 

The Southern Oscillation Index (SOI) is an index that shows the variation in the Southern 

Oscillation. It is the difference in mean sea level pressure anomalies at Tahiti and Darwin, 

Australia (Figure 7). Data for the SOI was obtained from the National Center for Atmospheric 

Research (NCAR) Climate and Global Dynamics (CGD).  

Figure 8 shows a plot of SOI for January 1961 to December 1990. The data is smoothed with a 

13-month centered moving average to highlight the positive and negative phases.   

-3

-1

1

3

N
iñ

o
 3

.4
 (

°C
) 

1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 2010

Year



14 

 

 

 

Figure 7. Location of Tahiti and Darwin, Australia (Source: National Oceanic and 

Atmospheric Administration) 

 

Note that the SOI is negatively correlated with the Niño 3.4 index, i.e. an El Niño (La Niña) will 

be represented by positive (negative) Niño 3.4 indices and the SOI will be negative (positive).  

 

 

Figure 8. Time series of the Southern Oscillation Index (SOI). The SOI series is overlain 

with a 13-month centered moving average series and ± 0.5 and ± 1 thresholds.  

 

The strength of El Niño and La Niña events can be gauged based on the scale given in Table 2.  
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Table 2. Criteria for El Niño (La Niña) Strength (Source: Desert Research Institute) 

El Niño (La Niña) Strength SOI Value 

Stronger El Niño Strongly Negative SOI (−1.00 or less) 

Moderate El Niño Mildly Negative SOI (−0.50 or less) 

Neither Niño Neither (SOI between -0.50 and +0.50) 

Moderate La Niña Mildly Positive SOI (+0.50 or more) 

Stronger La Niña Strongly Positive SOI (+1.00 or more) 

 

2.3 INDIAN OCEAN DIPOLE  

IOD is represented by anomalous SST gradient between the western equatorial Indian Ocean 

(50°E-70°E and 10°S-10°N) and the south eastern equatorial Indian Ocean (90°E-110°E and 

10°S-0°N). The location of the west and east poles are shown in Figure 9. The gradient is known 

as the Dipole Mode Index (DMI) and was obtained from the Japan Agency for Marine-Earth 

Science and Technology (JAMSTEC). Figure 10 is a plot of the DMI for the period January 

1961 to September 2010. Data beyond the latter date was not available.  

 

Figure 9. Map showing the location of the west and east poles of the IOD, marked with 

black boxes. (Source: Bureau of Meteorology, Australia) 
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Figure 10. Time series for IOD 

 

2.4 ASSOCIATION OF ENSO AND IOD WITH PRECIPITATION 

Pearson correlation is used to determine the correlation between climate indices and 

precipitation. The Pearson correlation coefficient, ���, is a measure of linear association between 

two time series: � and � and is given by 

 ������ =

���� − �������� − ����

����
 (1) 

where ������ is the cross-correlation for lag � between time series �� and �� with means �� and 

�� and standard deviation �� and �� respectively, and 
�∙� is the expectation operator. The range 

for ������ is [-1, 1], with larger |���| implying greater ability of � to predict �. 

The correlation coefficient can be used as a statistical test of independence to help make 

inferences about the degree of association between variables. The null hypothesis is that the two 

time series �� and �� are independent and identically distributed (iid) normal random variables 

���� = 0�. The test statistics � is defined as  

 � =
���√� − 2

�1 − ���
 
 (2) 
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The null hypothesis is rejected if |�| > �"#�$, where �"#�$ is from the Student’s � distribution with 

� − 2 degrees of freedom with a probability of exceedance of %/2 [Hirsch et al., 1992]. The 

form of the alternate hypothesis determines whether a one-sided or two-sided test is performed.  

2.4.1 Correlation between Large-scale Circulation Patterns and Precipitation 

Mauritius has two seasons: winter and summer. Winter is from May to October and summer is 

from November to April. November is also the beginning of the hydrological year. In order to 

assess the influence of ENSO and IOD on precipitation at Vacoas, the precipitation series was 

divided into two series, winter and summer, and the average precipitation for each year was 

computed. The Niño 3.4, SOI and IOD series were similarly divided into two sets.  

The correlation between Niño 3.4, SOI and IOD with average winter and summer precipitation 

were computed. The null hypothesis is that the seasonal average precipitation is not dependent 

on the indices. The magnitude and sign of the correlation coefficient indicates the existence, 

strength, and nature of any association between the index representing the phenomenon under 

study and precipitation recorded.  

Correlation between ENSO and Precipitation 

Figure 11 is a scatter plot of average winter precipitation anomalies against average winter SOI, 

and average summer precipitation anomalies against average summer SOI. Precipitation anomaly 

is the difference between the average precipitation for each year and the long term mean for the 

season. No trend is apparent in the summer plot, but a small negative trend, above average 

rainfall with negative SOI, is visible in the winter plot.  



18 

 

 

Figure 11. Scatter plot of average precipitation anomaly and average SOI for winter and 

summer. The two vertical lines show the ± 1 thresholds. 

 

Table 3 gives the correlation coefficient and p-values for the correlation between the two ENSO 

indices and precipitation.  

 

Table 3. Correlation coefficient between ENSO indices and precipitation anomaly at 

Vacoas. Numbers in bracket are the p-values of the correlation. 

Index Period Winter Summer 

Niño 3.4 1961-1990 0.237 (0.208) 0.031 (0.875) 

 1991-2009 0.065 (0.797) 0.296 (0.219) 

 1961-2009 0.161 (0.276) 0.075 (0.610) 

SOI 1961-1990 −0.329 (0.076) −0.015 (0.941) 

 1991-2012 0.042 (0.858) −0.348 (0.113) 

 1961-2012 −0.184 (0.198) −0.118 (0.411) 
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The first thing to note is that the correlation between Niño 3.4 and precipitation is of opposite 

sign compared to SOI and precipitation. This is because Niño 3.4 and SOI are negatively 

correlated as explained above.  

There exist a small correlation between winter indices and precipitation, for the 1961-1990 

series, while there is no apparent correlation between the indices and summer precipitation. The 

correlation not statistically significant at an alpha of 0.05 but statistically significant at an alpha 

of 0.1. The correlation between SOI and winter precipitation is stronger than that between Niño 

3.4 and precipitation. Even though both phenomena are related, stronger correlation with SOI 

has often been observed. One possible explanation can be that SOI is an Indo-Pacific 

phenomenon and recorded closer to Mauritius while Niño 3.4 is recorded further away from 

Mauritius. Further, precipitation may respond better or faster to atmospheric fluctuations than to 

changes in SST. Thus SOI may be a better index for the purpose of this study. Given that the 

phenomenon is cause and effect, we will investigate the effect of lagging SOI with respect to 

precipitation.  

The fact that there is a correlation between winter SOI and precipitation anomaly in the 1961-

1990 series but no correlation with the 1991-2012 or 1961-2012 series again prompts to the fact 

that the series may be inhomogeneous.  

Correlation between IOD and Precipitation  

Figure 12 is a scatter plot of average winter precipitation anomalies against average winter IOD, 

and average summer precipitation anomalies against average summer IOD. No trend is visible in 

the summer plot, but a positive dependence of precipitation with IOD is noted for winter.  
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Figure 12. Scatter plot of average precipitation anomaly and average IOD for winter and 

summer.  

 

Table 4 gives the correlation between average IOD index and average precipitation anomaly for 

winter and summer. The correlation for three different periods was computed. A positive 

statistically significant correlation exists between average winter IOD and precipitation anomaly 

at Vacoas.  

 

Table 4. Correlation coefficient between the IOD index and precipitation anomaly at 

Vacoas. Numbers in bracket are the p-values of the correlation. 

Index Period Winter Summer 

IOD 1961-1990 0.375 (0.041) 0.108 (0.572) 

 1991-2009 0.210 (0.388) 0.135 (0.482) 

 1961-2009 0.309 (0.031) 0.124 (0.394) 
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3 PRECIPITATION PREDICTION USING ARTIFICIAL NEURAL NETWORKS 

3.1 METHODOLOGY 

An artificial neural network (ANN) is a computational model that is inspired by the structure of 

biological neural networks in the brain. It consists of interconnected artificial neurons and it 

processes information using a connectionist approach to computation. ANNs are used to model 

complex relationships between inputs and outputs and to find non-linear patterns in data. They 

are in essence non-linear statistical data modeling tools. An ANN is an adaptive system that 

changes its structure (like weights between connections) based on information provided to the 

network during a learning phase. It can then be used for prediction of outputs given new input 

data.  

Artificial neural networks have been successfully used in a variety of applications such as 

medical diagnosis, vehicle control, recognition of faces and objects, e-mail spam filtering, game-

playing, handwritten recognition, automated trading systems, etc. ANNs are widely used in 

hydroinformatics applications like streamflow forecasting, rainfall estimation, subsurface 

characterization, watershed runoff estimation, etc. [Govindaraju and Rao, 2000]. 

Artificial neural networks are built with densely interconnected units known as neurons. This is 

analogous to the way biological systems are made up of interconnected neurons. In artificial 

neural networks, each neuron takes a number of real-valued inputs (possibly the outputs of other 

units) and produces a single real-valued output, which may become the input to many other units 

[Mitchell, 1997].  

In natural systems, information processing often occurs in stages. For example, in human vision, 

light falling on the retina is first transformed into patterns that the brain can process. Local parts 

of an image are then recognized by neurons specialized to respond to particular image patterns. 

The information, or features, extracted from these neurons is then fed into subsequent layers, 

which correspond to higher cognitive functions. 

Similarly, artificial neural networks consist of different stages and these stages can be 

represented by layers. Each layer consists of a specialized set of neurons, and performs a specific 

function. Artificial neural networks normally consist of three layers: the input layer, the hidden 

layer, and the output layer. The input layer simply accepts inputs from the external environment, 

while the output layer presents the results obtained to the external environment. Hidden layers 

are various levels of transformation of the data to establish the connection between inputs and 
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outputs. The number of hidden layers varies; hidden layers may even be absent in certain types 

of neural networks.  

A neuron has a number, i, of inputs xi and one output y. Associated with each input is weight wi. 

There may be an additional parameter w0, called a bias, which we may view as being the weight 

associated with an input x0 and is permanently set to 1. The single neuron is a feed-forward 

device, that is, the connections are directed from the inputs to the output of the neuron.  

The activation, a, of the neuron is calculated according to the inputs x:  

' = 	)*�
	
�

�� 
Then, the output y is set as a function f(a) of the activation. The output is also called the activity 

of the neuron [Mackay, 2003].  

3.1.1 Multi-Layer Perceptron  

The multi-layer perceptron (MLP) is the most widely used type of neural network. It is a feed-

forward neural network, that is, it contains no feedback loops. MLPs usually have 3 layers: an 

input layer, a hidden layer and an output layer (Figure 13). However, MLPs can also have more 

than one hidden layer. The figure below shows an MLP with three layers. The input layer has 

two neurons, the hidden layer has four neurons and the output layer has one neuron. 

 

 

Figure 13. A multi-layer perceptron. 

 

              Input Layer Hidden Layer Output Layer 
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3.1.2 Sigmoid Activation Function  

The activation function typically used by MLPs is the sigmoid activation function. Before the 

output of a neuron is fed to another neuron, the activation of the former neuron is calculated and 

passed to the sigmoid activation function, f(x), defined as follows (and plotted in Figure 14).  

+��� = 	 ,,	-	./0 
 

 

Figure 14. Sigmoid activation function. 

 

3.1.3 Training Algorithms 

The true power and advantage of neural networks lie in their ability to capture both linear and 

non-linear relationships and to learn these relationships directly from the data being modeled.  

Training algorithms give neural networks the ability to learn.  These algorithms enable the neural 

network to learn patterns presented to the neural network.  

Back-propagation is the most widely used training algorithm [Maier and Dandy, 2000]. It is a 

form of supervised learning, where the neural network is given a set of training examples.  Each 

example consists of a pair of input and output and the input is typically representing by a series 

of values. Other training algorithms, such as genetic algorithms, have also been developed to 

train MLPs. 
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3.2 RESULTS 

3.2.1 Predicting Precipitation using Multi-Layer Perceptron  

We have investigated the use of neural networks for the prediction of precipitation using the data 

from the Vacoas station. We have used an approach proposed by Silverman and Dracup [2000], 

who successfully applied the technique for long range precipitation prediction in California, 

USA. We started our tests trying to predict the yearly average precipitation, and then seasonal 

and monthly precipitation. We devised a series of tests to predict the seasonal average 

precipitation, showed in Table 5.  Example instances that are fed to the neural network are also 

given. 

Table 5. Test scenarios 

Test Description 

1 Prediction of average yearly precipitation using previous year’s ENSO/IOD values 

e.g.: 

Input (12) SOI values for the months of January to December 2000 

Output Average precipitation for the year 2001 

2 Prediction of average winter precipitation using preceding summer’s ENSO/IOD 

values e.g.: 

Input (6) IOD values for the months of November 2000 to April 2001 

Output Average precipitation for the months May to October 2001 

3 Prediction of average summer precipitation using preceding winter’s ENSO/IOD 

values e.g.: 

Input (6) Nino 3.4 values for the months of May to October 2000 

Output Average precipitation for the months of November 2000 to April 2001 

4 Prediction of average winter precipitation using preceding year’s ENSO/IOD values 

e.g.: 

Input (12) SOI values for the months of January to December 2000 

Output Average precipitation for the months of May to October 2001 

5 Prediction of average summer precipitation using preceding year’s ENSO/IOD values 

Input (12) Nino 3.4 values for the months of January to December 2000 

Output Average precipitation for the months November 2000 to April 2001 
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For each test scenario, 33 to 35 years of data have been used for training, 7 years of data has 

been used for validation and 7 years of data have been used to test the neural network. The root 

mean squared errors (RMSE) obtained for the test set are shown in Table 3. 

 

Table 6. The Root Mean Square Error (mm) obtained with test data. 

Test RMSE in precipitation prediction  

 IOD Nino 3.4 SOI 

1 22.9 12.5 21.1 

2 23.4 23.7 21.0 

3 34.7 25.0 28.4 

4 20.9 23.1 19.5 

5 35.2 22.4 30.8 

 

Figure 15 shows that the results obtained when predicting the average winter precipitation are 

more accurate. This may be because of the fact that large scale circulation patterns seem to 

influence the precipitation mainly in winter. However, the accuracy of the results may also be 

because of the relatively low variability of precipitation in winter months. The best results have 

been obtained using Test 4, which is the prediction of average winter precipitation using the 

preceding year’s SOI values as input.  
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Figure 15. Mean squared error obtained using the different test scenarios. 

 

Figure 16 shows the accuracy to which each year’s average winter precipitation was predicted. 

The accuracies range from 74.8% to 96.2%, with an average of 86%. 

 

 

Figure 16. Percentage accuracy of average winter precipitation using SOI. 
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Based on the results obtained above, we tried to predict the monthly precipitation using SOI 

values as input (Table 7). The results for monthly precipitation are not as accurate as the results 

for the average winter precipitation (Table 8 and Figure 17). However, prediction is again more 

accurate in winter months. 

 

Table 7. Test scenario 6 

Test Description 

6 

Prediction of monthly precipitation using previous year’s SOI values e.g.: 

Input (12) SOI values for the months January to December 2000 

Output Precipitation for each month  

 

Table 8. Results obtained for test scenario 6 

Month RMSE (mm) 

January 71.1 

February 108.6 

March 162.7 

April 60.8 

May 37.0 

June 22.1 

July 26.6 

August 36.9 

September 64.3 

October 64.8 

November 21.9 

December 59.4 

 



28 

 

 

Figure 17. Monthly RMSE in precipitation prediction using SOI as input (Test 6). 
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4 TIME SERIES ANALYSIS AND FORECASTING 

4.1 BACKGROUND 

In this chapter, we build statistical and time-series models to establish relationships between 

precipitation and El Niño Southern Oscillation (ENSO) and Indian Ocean Dipole (IOD). These 

models are then used to explain and predict precipitation patterns. Our main goal is to uncover 

short and long term trends, and also predict precipitation, given precipitation data of the past, and 

also large scale circulation indices such as Niño 3.4, Southern Oscillation Index (SOI) and IOD. 

Accurate rainfall prediction, in the short, medium and long terms, can be enormously helpful in 

managing water resources in Mauritius. 

There have been numerous studies that relate drought and rainfall to large scale circulation 

phenomena, such as Southern Oscillation or El Niño [Cordery and Yao, 1993; Pittock, 1984; Sun 

and Furbish, 1997]. These studies cover various parts of the globe, from Florida to eastern 

Australia. Qualitative seasonal rainfall forecasts are also made based on the relation between 

rainfall and large-scale circulation indices, such as SOI. [Cordery and Yao, 1993], along with 

several other studies, establish that there is a fairly strong correlation between SOI and eastern 

Australian rainfall. Sun and Furbish [1997] show that El Niño and La Nina are responsible for 

up to 40% of annual precipitation variation in Florida.  

It is quite usual for rainfall and large-scale circulation indices to have correlation coefficients as 

high as 0.7. However it has been shown that these relationships may not be consistent over time.  

Cordery and Yao [1993] show that although there are strong, consistent relationships between 

rainfall and SOI for some seasons at some locations in Australia, for other seasons the 

correlation coefficient of the relationship may vary from more than 0.6 for long periods down to 

zero and small negative values for other long periods. Pittock [1984] suggests that there is little 

doubt that a broad pattern of teleconnections exists, but that the influence of particular 

teleconnection mechanisms waxes and wanes from time to time at particular locations. He 

suggests that variations in the local spatial patterns are to be expected and these could be caused 

by statistical fluctuations or stochastic noise in the climatic system. 

4.1.1 Time Series 

In this work, we are dealing with time series data have a natural temporal ordering and 

seasonality. Besides yearly cycles, we can also look at the two seasons that are defined for 

Mauritius: six months of summer, extending from October to April, and six months of winter, 
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from April to September. In this chapter, we first perform some common time series analysis to 

extract meaningful statistics. We also look into time series forecasting, where various models are 

used to predict future values based on previously observed values.  

We assume a stochastic model, where observations closer in time are more likely to be related; 

we adopt a time-domain method for time series analysis (as opposed to frequency-domain), and 

parametric approaches such as the autoregressive model. Our analysis covers 50 years, from 

1961 to 2009. However, in light of observations made on the non-stationarity of the relationship 

between rainfall and large scale circulation, we also analyze the data for shorter-term time 

periods. 

4.2 SUMMARY OF DATA 

For the study in this chapter, we use monthly data for nearly 50 years (from 1961 to 2009). The 

variables we use are: precipitation (in mm) at Vacoas, Niño 3.4, SOI, and IOD. 

4.2.1 Precipitation 

Precipitation data between 1961 and 1990 was obtained from the National Climate Data Center 

(NCDC), which is part of the Global Historical Climatology Network (GHCN). Data between 

1991 and 2009 was obtained from the Mauritius Meteorological Services.  

4.2.2 Niño 3.4 

The Niño 3.4 index is the area-averaged sea surface temperature anomaly (SSTA) over the 

region bounded by 5°N–5°S and 120°W–170°W. Monthly data for the Niño 3.4 index was 

obtained from the International Research Institute (IRI) in the Climate and Society Data Library.  

4.2.3 Southern Oscillation Index (SOI)  

SOI is an index that shows the variation in the Southern Oscillation. It is the difference in mean 

sea level pressure anomalies at Tahiti and Darwin, Australia. Data for the SOI was obtained from 

the National Center for Atmospheric Research (NCAR) and Climate and Global Dynamics 

(CGD).  

4.2.4 Indian Ocean Dipole (IOD) 

IOD is represented by anomalous SST gradient between the western equatorial Indian Ocean 

(50°E-70°E and 10°S-10°N) and the south eastern equatorial Indian Ocean (90°E-110°E and 



31 

 

10°S-0°N). The gradient is known as the Dipole Mode Index (DMI) and has been obtained from 

the Japan Agency for Marine-Earth Science and Technology (JAMSTEC).  

4.3 PRELIMINARY ANALYSIS 

Table 9 shows some key statistics for the data series that spans 584 months between January 

1961 and August 2009. Figure 18 show the time plots for precipitation, Niño 3.4, SOI and IOD 

(along with a horizontal lines to indicate the long-term mean). 

Table 9. Summary statistics 

Key Variable Mean 
Std. 

Dev. 
Minimum Maximum 

Augmented Dickey-

Fuller Statistic 

Precipitation 

(mm) 
172.9 162.1 11.5 1362.0 -17.82 

Niño 3.4 0.1068 0.8604 -2.3298 2.6707 -3.97 

SOI -0.2731 1.8222 -7.6000 4.7000 -11.34 

IOD 0.0277 1.0074 -2.7351 3.5479 -3.99 
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Figure 18. Variation of precipitation at Vacoas (in mm), Niño 3.4, SOI, and IOD with time 

Long periods of below the long-term mean precipitation and short periods of high precipitation is 

clearly visible. For the period of record plotted, the maximum precipitation recorded is 1,362 

mm in December 1961. The minimum monthly precipitation recorded is 11.5 mm in November 

1973. The coefficient of variation
 

µσ=vC  (where σ  is the standard deviation and µ  is the 

mean), is a statistical measure of variability, where 1<vC  indicates less variation, while 1>vC  

indicates high variability. The coefficient of variation for precipitation is 0.94.  

4.3.1 Stationarity Tests 

It can be observed that precipitation, and the three teleconnection indices, are highly variable 

around the mean. We first determine if the data is stationary (i.e. the statistical properties of the 

time-series, such as mean, variance, autocorrelation, etc. are all constant) because most statistical 

forecasting methods are based on the assumption that the time series is stationary, or can be 

rendered approximately stationary (i.e. "stationarized") through the use of mathematical 

transformations.  The four data series are, in fact, stationary, based on the augmented Dickey–
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Fuller test for a unit root in the time series sample. The augmented Dickey–Fuller (ADF) statistic 

(Table 9) used in this test is a negative number. The more negative it is, the stronger is the 

rejection of the hypothesis that there is a unit root at some level of confidence. The test statistic 

for all four time series data shows with high confidence (better than 1% significance level) that 

the series are stationary, especially precipitation and SOI. 

Table 10 breaks down the analysis of the data into four decades. It can be observed that in the 

period 1991-2000, the mean precipitation is much lower than the long-term mean. Also, for the 

same period, the mean SOI has the highest negative value and the mean Niño 3.4 has the largest 

positive value over all the four decades. This seems to indicate a correlation between 

precipitation and Niño 3.4/SOI for that period only. We shall further investigate how the 

correlation varies with later in the chapter. 

Table 10. Mean of key variables over 50 and 5 x 10-year periods 

 

 

Long-term 

mean 
Mean over 10-year periods 

 

1961- 

2009 

1961- 

1970 

1971-

1980 

1981-

1990 

1991-

2000 

2001-

2009 

Precipitation 172.9 186.3 174.1 177.4 154.3 172.2 

Niño 3.4 0.107 0.116 -0.161 0.140 0.280 0.168 

SOI -0.273 -0.153 0.203 -0.552 -0.674 -0.177 

IOD 0.028 0.094 -0.035 0.046 -0.004 0.038 

 

Figure 19 shows the variation of mean precipitation over time. Here, a moving window of five 

years is used to track the moving average. The average precipitation fluctuates quite significantly 

with time, although a slight downward trend is noticeable. However, the 50-year period is too 

small to ascertain any long-term trend, and here we assume that precipitation is stationary. 
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Figure 19. Moving average over five years of precipitation (in mm) at Vacoas. 

4.3.2 Correlation between Precipitation & Large Scale Circulation 

Table 11 shows various pairwise correlations over a 50-year period among the variables used in 

this study. These correlations are calculated by comparing the variables for the same months i.e. 

without considering any lag. 

We observe that there seems to be practically no correlation between precipitation and the large 

scale pattern indices in the long term. On the other hand, indices for the large-scale patterns are 

fairly well correlated (Figure 20 to Figure 22), especially Niño 3.4 and SOI. This is expected; 

Niño 3.4 and SOI capture the same phenomenon, and a strong (inverse) correlation is expected. 

IOD captures information on a different large scale circulation pattern, and it is interesting to see 

some limited correlation between Niño 3.4 and IOD. 

Table 11. Correlation coefficients 

Niño 3.4 SOI IOD 

Precipitation -0.025 -0.002 0.035 

Niño 3.4 -0.733 0.378 

SOI -0.275 
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Figure 20. Scatter plot of SOI and Niño 3.4, showing negative correlation between the two 

(correlation coefficient = -0.7333). 

 

Figure 21. Scatter plot of SOI and IOD, showing slight negative correlation between the 

two (correlation coefficient = -0.2747). 
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Figure 22. Scatter plot of Niño 3.4 and IOD, showing slight positive correlation between the 

two (correlation coefficient = 0.3781). 

 

4.3.3 Seasonal Correlations  

Our analysis so far has not revealed any significant correlation between precipitation and indices 

for telecommunication patterns. In this section, relationships between rainfall and large scale 

circulation indices are examined on a seasonal basis. Seasonal data is used because it gives better 

correlations, and also because forecasting of precipitation may be possible with lagged relations 

(precipitation lagging behind El Niño, as we are inclined to expect). 

Mauritius has two seasons: winter and summer. Winter is from May to October and summer is 

from November to April. November is also the beginning of the hydrological year. In order to 

assess the influence of ENSO on precipitation at Vacoas, the precipitation, Niño 3.4, SOI and 

IOD series were averaged (over six months) for the two seasons, winter and summer. Table 3.4 

reveals much stronger correlations among the variables, remarkably more in winter than in 

summer. 
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Table 12. Correlations for summer and winter 

 

Precipitation-

Niño 3.4 

Precipitation-

SOI 

Precipitation-

IOD 

Niño 3.4- 

SOI 

Niño 3.4- 

IOD 

SOI- 

IOD 

Summer 0.075 -0.079 0.158 -0.923 0.231 -0.062 

Winter 0.161 -0.174 0.307 -0.893 0.549 -0.607 

 

Figure 23 shows how the correlations between precipitation and the three indices (for winter) 

vary with time for a moving window of 10 years between 1960 and 2010. The correlation 

precipitation and SOI is the strongest, although unstable. It is mostly negative, and the closest 

correlation occurs with a coefficient of -.99. The correlation between precipitation and both Niño 

3.4 and IOD are predominantly positive, as expected. But there is a lot of variation, with the 

maximum correlation coefficient for a 10 year period is 0.78 for IOD and 0.70 for Niño 3.4. 

 

 

Figure 23. Correlation coefficient between precipitation and teleconnection indices (for 

moving 10-year window) 
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4.4 HOLT-WINTERS EXPONENTIAL SMOOTHING 

Time series data can typically be decomposed into several components: trend, seasonal, cyclical 

and an idiosyncratic component. The idiosyncratic portion of a series represents all those factors 

other than trend, seasonal, and cyclical. Intuitively, the idiosyncratic component is like an error 

term, or the rough part of the series. Data smoothing is commonly so that the trend, seasonal, and 

cyclical components can be identified. In single moving average smoothing methods, the past 

observations are weighted equally. Exponential smoothing assigns exponentially decreasing 

weights as the observations get older. In other words, recent observations are given relatively 

more weight in forecasting than the older observations. In exponential smoothing, there are one 

or more smoothing parameters to be determined (or estimated) and these choices determine the 

weights assigned to the observations.  

In this section, we use the triple exponential smoothing method for rainfall forecasting. This 

method takes into account seasonal changes as well as trends, as proposed by Charles Holt and 

Peter Winters (Holtz 1957; Winters 1960). The method calculates a trend line for the data as well 

as seasonal indices that weight the values in the trend line based on where that time point falls in 

the seasonal cycle. In essence, the method minimizes the root mean square error by finding 

optimal values for three parameters:  the data smoothing factor, the trend smoothing factor the 

seasonal change smoothing factor. 

Figure 24 shows the actual and predicted values of monthly precipitation using Holt-Winters 

exponential smoothing. The root mean squared error obtained with this method is 129.2 mm.  
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Figure 24. Actual and predicted precipitation using Holt-Winters exponential smoothing 

(root mean square error = 129.2mm) 

4.5 REGRESSION MODELS 

We now discuss regression models that were used for prediction and forecasting. The dependent 

variable is precipitation and the independent variables are lagged precipitation and indices for 

large scale circulation (Niño 3.4, SOI and IOD). Regression analysis helps one understand how 

the typical value of the dependent variable changes when any one of the independent variables is 

varied, while the other independent variables are held fixed. Most commonly, regression analysis 

estimates the conditional expectation of the dependent variable given the independent variables - 

that is, the average value of the dependent variable when the independent variables are fixed. 

Autoregressive moving average (ARMA) models provide a description of a (weakly) stationary 

stochastic process in terms of two polynomials, one for the auto-regression and the second for 

moving averages. Given a time series of data, the ARMA model is a tool for understanding and, 

perhaps, predicting future values in this series. The model consists of two parts, an 

autoregressive (AR) part and a moving average (MA) part [Box et al., 2008), ].  

An autoregressive integrated moving average (ARIMA) model is a generalization of an ARMA 

model. These models are fitted to time series data either to better understand the data or to 

predict future points in the series. ARIMA models form an important part of the Box-Jenkins 
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approach to time-series modeling. We use this model to see if the precipitation can be predicted 

based only on data of previous years, and then improved by introducing the three teleconnection 

indices. 

Figure 25 shows the autocorrelation of monthly precipitation for lags from 1 month to 15 

months. The lengths of the line are indications of the strength of the autocorrelation at various 

lags. There is strong autocorrelation as well as a pattern over lag, which suggests that the 

autocorrelations are not random. 

 

Figure 25. Autocorrelations of precipitation at Vacoas with different lags (in months) 

 

Figure 26 and Figure 27 compare actual and predicted precipitation, based on a simple linear 

regression and an ARIMA model respectively, where precipitation is the dependent and lagged 

precipitation as well as the large scale circulation indices are independent variables. The root 

mean square error is 129 mm and 136.8 mm respectively. 
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Figure 26. Predicted vs. actual monthly precipitation at Vacoas (in mm) based on linear 

regression (Root mean square error = 129mm) 

 

Figure 27. Actual vs. predicted precipitation based on an ARIMA model (Root mean 

square error = 136.8 mm) 
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There are few observations that we would like to highlight: 

For both the simple linear regression and ARIMA models, we used lagged precipitation (up to 12 

months) with and without factoring in Niño 3.4, IOD and SOI indices. The latter indices 

improves the monthly prediction, albeit by a small percentage (5-10%), but consitently so. Here 

we take the average prediction values independent of the month and season. As we shall see 

later, the precdiction are much more accurate in winter than in summer. 

We tested the optimal lags for the three indices: our results indicate that for both Niño 3.4 and 

SOI, the last three months of data seem relevant in determining the current precipitation value. 

For IOD, the last five months of data gives the best prediction of current month’s precipitation. 

As previous results indicate, the accuracy of prediction varies largely from month to month. 

Figure 28 shows the root mean square error values for each month. There is a very clear trend of 

incrementally decreasing error to a minimum at the peak of winter (in June-July) and increasing 

to a maximum at the peak of summer (in January-February). It is interesting to see that both the 

correlation and the ability to predict is heavily dependent on the month of the year. 

 

 

Figure 28. Monthly root mean square error in prediction of precipitation based on 

regression methods. Rainfall is much more predictable in winter than in summer. 
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5 DROUGHT ANALYSIS 

5.1 CHOOSING A DROUGHT INDEX 

Droughts in Mauritius, at least in the public’s perception, are identified when the water level in 

the major reservoirs fall below the long term mean. This is probably the simplest and easiest way 

to identify droughts, but it is not necessarily the most effective way, as there is no forewarning 

mechanism, except for the noticeable decline in water level when records are examined. Another 

possible approach is to monitor rainfall, and the lack thereof may provide a warning, on the 

possible state of future water availability.  

Droughts, however, are not confined to rainfall deficits alone. Numerous definitions for drought 

exist and each is more adapted to one particular field than another. A lack of precipitation leads 

to a meteorological drought, which is defined as the degree of dryness, with respect to a normal 

or average condition, and the duration of the dry event. A meteorological drought is the onset of 

a drought event. Agricultural droughts follow meteorological droughts and are linked to 

precipitation deficits, soil water deficits, and decline in groundwater levels etc. A hydrological 

drought is the result of an extended period of rainfall deficit which translate into low flows in 

streams and low water levels in reservoirs, which may subsequently have a number of socio-

economic implications.  

A suite of indices (e.g. Palmer Drought Severity Index, Palmer Hydrological Index, Standardized 

Precipitation Index, Statistical Z-score, Effective Drought Index, etc.) have been developed for 

drought identification. Some of based on a single hydro-meteorological parameter, while others 

may incorporate more than one parameter, and can be a more efficient index for drought 

assessment. It is imperative that a study on assessing the most important parameter(s) for drought 

identification be conducted for Mauritius in order to determine which index may be most 

appropriate for the local context.   

Given that in this study, data is scarce, we will use the Standardized Precipitation Index (SPI), 

which is based on precipitation only.  

5.2 STANDARDIZED PRECIPITATION INDEX 

SPI was proposed by McKee et al. [1993]. The motivation behind this method was to have an 

index that can be compared across different climatic regions. It is based solely on precipitation 

and gives a better representation of abnormal wetness and dryness than the Palmer Drought 

Severity Index, for example.  
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The SPI has been designed to be a spatially invariant quantity that can be computed to give 

precipitation deficit at multiple timescales [Guttman, 1999]. Computing the index for short and 

long timescales highlights the impacts of drought on various water resources. Runoff and 

reservoir storage respond much faster to a storm event than soil moisture, groundwater level. SPI 

are normally calculated for 3, 6, 9, 12, 24, and 48 month time scales. 

SPI calculation is based on long-term precipitation record. A probability density function that 

describes the long term precipitation observation is determined. Guttman [1999] explains that the 

use of different probability distribution will lead to different SPI values. The chosen distribution 

is then transformed to a normal distribution so that the mean SPI for the location and desired 

period is zero. Normalizing allows for a consistent representation of wet and dry periods. A 

positive SPI value indicates precipitation greater than the mean and negative values indicate 

lower than the mean. A classification system defining drought intensities, developed by McKee 

et al. [1993], is given in Table 13 below. Continuous negative SPI value indicates drought 

events, which end when the SPI becomes positive. The durations, severities, and inter-arrival 

times of drought events can thus be determined from a plot of the SPI values.   

Table 13. Interpretation of SPI values 

  SPI ≤ − 2.0  Extremely dry 

− 2.0 < SPI ≤ − 1.5  Moderately dry 

− 1.5 < SPI ≤ − 1.0  Dry  

− 1.5 < SPI < 1.0  Neutral  

1.0 ≤ SPI < 1.5  Wet 

1.5 ≤ SPI < 2.0  Moderately wet 

2.0 ≤ SPI    Extremely wet 

5.2.1 Computing SPI 

SPI calculation described below follows the Weekly SPI User’s Manual (available from 

http://greenleaf.unl.edu/downloads/SPI_Manual.pdf). SPI is computed by fitting a probability 

density function to long term precipitation record and normalizing the values obtained. In the 

present study the 2-parameter gamma distribution will be used. The parameters α and β are 

referred to as the shape and scale parameters respectively. The probability density function of the 

gamma distribution is given below: 

1��� = 12Γ�%� �4-,5-
�6 

The parameters thus obtained are used to derive the cumulative density function  
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7��� = 81���9� =�

:
12Γ�%�8�4-,�

:
5-�69� 

Letting � = � 2; , the equation becomes an incomplete gamma function: 

7��� = 1Γ�α�8 �4-,5-$9�$

:
 

The gamma function is undefined at x = 0. Since precipitation can be equal to zero, the 

cumulative density function becomes: 

=��� = > + �1 − >�7��� 
where q is the probability of a zero. The cumulative density function is then transformed to a 

standard normal random variable Z with mean zero and variance of one, which is the value of the 

SPI.  

@ = ABC = −D� − E: + E,� + E � 1 + 9,� + 9 � + 9F�FG 					+HI					0 ≤ =��� ≤ 0.5 

@ = ABC = +D� − E: + E,� + E � 1 + 9,� + 9 � + 9F�FG 					+HI					0.5 ≤ =��� ≤ 1.0 

where 

� = Mln P 1�=���� Q 					+HI					0 ≤ =��� ≤ 0.5 

� = Mln P 1�1.0 + =���� Q 					+HI					0.5 ≤ =��� ≤ 1.0 

where 

E0 = 2.515517   91 = 1.432788 

E1 = 0.802853  92 = 0.189269 

E2 = 0.010328  93 = 0.001308 
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5.3 SPI(6) AT VACOAS 

SPI for six months [SPI(6)] was calculated for the Vacoas station. The plot of SPI, overlain on 

monthly precipitation anomaly for the period January 1961 to September 2012 is given in Figure 

29. Anomaly for month X is given as precipitation for month X and year Y minus mean for month 

X. Positive (negative) anomalies, which represent above (below) average rainfall are shown in 

blue (red). It can be seen that precipitation at Vacoas cycles through positive and negative 

periods and the SPI(6) values closely follow the precipitation pattern.  

 

Figure 29. Plot of monthly rainfall anomaly and SPI(6) at Vacoas 

5.3.1 Identifying Drought Events 

The following information can be extracted from the SPI(6) plot, as illustrated in Figure 30: 

• Drought duration 

• Drought severity (area under, below the chosen SPI threshold) 

• Inter-arrival time which can be arbitrarily defined as the duration between successive 

droughts or the time between the start of successive drought events. In this study we 

adopt the former approach.  
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Figure 30. Drought duration, severity, and interarrival time for drought events from SPI(6) 

5.3.2 Drought Duration, Severity and Inter-arrival Time  

For the purpose of this study, we assume that a drought event occurs when SPI(6) ≤ −1, and ends 

when SPI(6) > −1. Thirty four drought events, lasting a total of 88 months were recorded. The 

basic statistics of each variable (drought durations, severities, and inter-arrival times) thus 

extracted, from SPI(6) for Vacaos, is given in Table 14. 

The mean duration of droughts for the period January 1962 to September 2012 is 2.6 months. 

The minimum drought duration is 1 month, while the maximum is 9 months. This event occurred 

in January 1990 and lasted until May 1992, and the associated severity is 17.6. The average 

drought severity is 3.8. The mean drought inter-arrival time is 15.2 months, and the maximum 

period without a drought is 58 months.  

Table 14. Statistics for duration, severity, and inter-arrival time extracted from SPI(6) 

 Duration (months) Severity
a
 Inter-arrival Time 

(months) 

Number of events 34 34 34 

Total  88 129.119 515 

Minimum 1 1.003 1 

Maximum 9 17.581 58 

Average 2.588 3.798 15.147 

Standard deviation 1.956 3.746 13.513 

Skewness 1.757 2.468 1.189 
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a
 Severity values are absolute 

5.3.3 Marginals for Drought Duration, Severity 

The marginal for the drought duration and severity was chosen from a suite of probability 

distribution functions commonly employed in hydrology. Both graphical and analytical 

goodness-of-fit tests were used to discriminate between distributions. Duration was found to 

follow a gamma distribution and severity followed an exponential distribution. The pdf for 

gamma and exponential is given as:  

 +Z�9|%, 2� = 124\�%� 94-,5-Z 6⁄ 										0 < 9 < ∞, %, 2 > 0 (3) 

 +̀ �a|b� = 1b 5-` c⁄ 																			0 ≤ a < ∞, b > 0 (4) 

where 9 is the duration, a is the severity, % and 2 are the shape and scale parameters of the 

gamma distribution, respectively, and b is the parameter for the exponential distribution. The 

parameters for each distribution were estimated using maximum log-likelihood. The fitted 

marginal for duration and severity is shown in Figure 31.  

         

Figure 31. Marginal distributions for duration and severity 
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5.4 COPULA SELECTION 

Copula, which is due to  Sklar [1959], was used to model the dependence between duration and 

severity. It allows the combination of different marginal families into a joint distribution. It states 

that the joint distribution of any randomly distributed variables �d, e� may be written as  

 =��, �� = f�g���, 7����										�, � ∈ i (5) 

where g��� and 7��� are the marginal probability distributions and f = �0,1� × �0,1� → �0,1� , 

the mapping function is the copula. This implies that a valid probabilistic model for �d, e� may 

be obtained when the three components, g,	7, and f, are from the following parametric families: 

 g��; m�,										7��; n�,										f�o, p; q� (6) 

where m and n are parameter vectors of the marginal distributions and q is the parameter vector 

for the dependence structure. o and p are the quantiles of the uniformly distributed variables 

r = g�d� and s = 7�e�, respectively [Chowdhary et al., 2011]. A number of copula families 

are available and are categorized into four classes: Archimedean, extreme value, elliptical, and 

other miscellaneous classes. 

The most appropriate copula for modeling the dependence of drought duration and severity at 

Vacoas was chosen from the following copulas: Gaussian, Student t, Clayton, Gumbel, and 

Frank. The suitability of the copula was determined from a set of graphical and analytical tests. 

Gumbel was found to be most suitable for this exercise. Figure 32 gives a plot of the severity 

versus duration values simulated from the chosen copula overlain with observed ones. It can be 

seen that the chosen copula is able to simulate the complete range of observations, without any 

bias at the tails.  
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Figure 32. Plot of simulated values (gray) and observed values (blue) for Vacoas.  

 

5.5 CONDITIONAL DISTRIBUTION FOR DROUGHT DURATION AND SEVERITY 

Using the chosen copula and associated dependence parameter t, the conditional distribution can 

be derived. Following Shiau [2006], the probability that duration and severity exceed a certain 

threshold can be expressed as 

 
B�u ≥ 9, A ≥ a� = 1 − gw�9� − gx�a� + gw,x�9, a� 

= 1 − gw�9� − gx�a� + C�gw�9�, gx�a�� 
(7) 

where gw�9� and gx�a� are the cumulative duration and severity frequency distributions, 

respectively. The conditional drought severity distributions given a drought duration exceeding a 

certain threshold 9z, and the conditional drought duration given that drought severity exceeds a 

certain threshold az, are  

 B�A ≤ a|u ≥ 9z� = gx�a� − f�gw�9z�, gx�a��1 − gw�9z�  (8) 

 B�u ≤ 9|A ≥ az� = gw�9� − f�gw�9�, gx�az��1 − gx�az�  (9) 
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respectively.  

The conditional distribution of severity given duration exceeding d' and conditional distribution 

of duration given severity exceeding s' is given in Figure 33 and Figure 34 respectively. This 

information can be used for more efficient water resources planning and management.  

 

Figure 33. Conditional distribution of Severity given Duration exceeding d' 

 

Figure 34. Conditional distribution of Duration given Severity exceeding s' 
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6 DISCUSSION 

1. Mauritius is a water stressed country and is quickly slipping into the water scarce category, 

as demand for water is growing rapidly. Water availability and allocation is one of the 

major challenges the country faces. The island does not have enough carry-over capacity 

i.e. most of the water received during a hydrologic year is used within the year itself. Thus, 

a shortage of rainfall can have immediate and disastrous effects on the well-being of the 

population and various economic sectors of the island. 

2. The ability to accurately predict precipitation and drought conditions is a critical factor in 

the short, medium, and long term water resources management.  

3. Precipitation around the world is known to be influenced by large-scale circulation 

patterns. In Mauritius, two major teleconnection patterns that are likely to affect rainfall 

are the El Niño Southern Oscillation (ENSO) and the Indian Ocean Dipole (IOD). In this 

study, our focus was to assess the influence of these circulation patterns on precipitation at 

Vacoas. The study can be extended to cover the whole island.  

4. The indices we have used are the Niño 3.4 index, the Southern Oscillation Index (SOI), 

and the Indian Ocean Dipole index for the period 1961 to 2012. Based on the Augmented 

Dickey-Fuller test, the time series for precipitation and three climate indices are deemed 

stationary.  

5. Our initial analysis revealed very poor correlation between precipitation and  these climate 

indices. However, when the data series were split into two separate seasons (winter and 

summer), higher correlations were obtained for winter. For IOD, the correlation for winter 

is statistically significant at 5% confidence.  

6. Furthermore, we found, using a 10-year moving average window, that the correlations vary 

markedly with time. It fluctuates from very high correlation (above 0.9) to negligible 

correlation. This non-stationarity in the correlation between precipitation and climate 

indices has been in studies pertaining to precipitation in Australia [Cordery and Yao, 

1993]. 

7. Our next aim was to predict precipitation using these teleconnection indices as predictor 

variables. With artificial neural networks (ANNs), we obtained an average winter 

precipitation prediction accuracy of 86%. However, prediction of summer precipitation 

was less accurate than winter precipitation. We also predicted yearly precipitation and 
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monthly precipitation prediction with reasonable accuracy. Furthermore, monthly 

precipitation prediction was less accurate than average precipitation prediction for winter.  

8. Results obtained from ANN were more accurate than those from other statistical 

techniques, such as linear regression and autoregressive integrated moving average 

(ARIMA). This may be attributed to the ability of ANNs in capturing the non-linearity in 

the system. We should point out that this analysis requires further investigation, and a 

comprehensive set of tests covering various statistical techniques with different 

parameters.  

9. Both ANNs and regression based models predict winter precipitation with remarkably 

higher precision than summer precipitation. Two factors may be contributing to this result: 

(i) the natural high correlation between large-scale circulation pattern in winter, and (ii) the 

relatively higher variability in summer precipitation.  

10. Standardized Precipitation Index (SPI) is proposed as it is a simple and effective index that 

can be used for drought definition. It is spatially invariant quantity that can be computed to 

give precipitation deficit at multiple timescales. It can be calculated for different time 

scales. 

11. Based on SPI(6) for Vacoas, we found that drought durations vary between 1 and 9 months 

with a mean of 2.6 months. The mean inter-arrival time is 15 months. We also identified 

the severity of all drought events between 1961 and 2012.  

12. We determined the probability distributions of duration and severity. Duration was found 

to follow a gamma distribution and severity followed an exponential distribution.  

13. This framework is useful for determining the probability of drought occurrences and in 

assessing the conditional distribution of severity given duration exceeding various 

durations and conditional distribution of duration given severity exceeding various severity 

values.  
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7 CONCLUSIONS AND WAY FORWARD 

� Our study shows that techniques within the realm of hydroinformatics can be useful in 

precipitation prediction and other key parameters, such as water levels in reservoirs. 

Further analysis is recommended to assess the usefulness and limitations of related 

techniques in machine learning, artificial intelligence, and statistics. 

� Data on water levels (or capacity) in reservoirs along with consumption can be used to 

model the relationship between large-scale circulation patterns and water availability. 

Along the lines of precipitation prediction, models for water level prediction can be 

developed. 

� Our study was based on only one meteorological variable at one station. This is highly 

insufficient for faithful modeling. We suggest that the analysis be extended to include other 

variables, such as temperature, pressure, evaporation, humidity, etc. It has to be spatially 

extended to cover the island. This will help in cross validating the results obtained.  

� The study covered a short period (1961 to 2012). If longer time series are available, trends 

related to climate change may be determined.  

� Droughts in Mauritius, at least in the public’s perception, are identified when the water 

level in the major reservoirs fall below the long term mean. This is probably the simplest 

and easiest way to identify droughts, but it is not necessarily the most effective way. We 

propose an index that captures the multi-dimensional nature of drought: duration, severity, 

and inter-arrival time. 

� Again, our analysis on drought duration and severity was limited to one station only. This 

study can be extended to cover the whole island and conditional drought duration and 

severity maps (similar to isohyet) can be developed for long-term water planning.  

�  
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